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The possible distortions in the spinel structure resulting from rotation of the
tetrahedra and octahedra have been investigated by a group-theoretical method.
The possibility of the existence of 28 phases of rotation of the tetrahedra and
five phases of rotation of the octahedra has been shown. In all these phases the
polyhedra are equivalent, but their orientation can be different. Among the
phases of the tetrahedra rotation there is one phase of pure rotation, i.e. not
accompanied by additional (not rotation) distortions of the structure. Of the five
phases of the rotation of the octahedra three phases can be obtained only by
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1. Introduction

In spinels AB,X, anions X form a dense cubic packing, in the
tetrahedral and octahedral voids of which the atoms A and B
are distributed. The space group of spinels is Fd3m (O}).
Tetrahedral cations occupy Wyckoff position 8a with local
symmetry 43m (T,), octahedral cations Wyckoff position 16d
with local symmetry 3m (Ds,) and anions Wyckoff position
32e with local symmetry 3m (Cs,). The spinel structure can be
represented as a packing of tetrahedra and octahedra (Figs. 1a,
1b). Tetrahedra are placed in the same way as the carbon
atoms in diamond; they are not connected with each other
(Fig. 1b). Octahedra have common edges with each other and
each octahedron is surrounded by six other octahedra (Fig.
1c). Each vertex of the tetrahedron is a vertex of the octa-
hedron.

The rigid framework of the spinel structure from the
tetrahedra and octahedra varies weakly with changes in
environmental conditions and crystallization. The polyhedral
groups of atoms, units (fragments, modules, structural blocks)
resistant to external impact, are well known in structural
chemistry, crystal chemistry and solid-state physics (Pauling,
1967; Belov, 1947; Urusov, 1987). The modular structure is
found in alloys (O’Keeffe & Andersson, 1977), poly-
phosphides (Jeitschko & Braun, 1978), silicates (Thompson,
1978; Horiuchi et al., 1980), spinelloids (Horioka et al., 1981;
Ivanov & Talanov, 2008) and other families of substances
(Wells, 1987-1988; Ormont, 1950; Pearson, 1977, Hazen &
Finger, 1981; Talanov et al., 2008; Zvyagin, 1993; Blatov et al.,
1994; Shevchenko et al., 2009; Zheligovskaya & Bulenkov,
2008a,b; Ferey, 2000). Today it is clear that the modular
structure of matter is a universal feature of matter at all
structural levels (Ivanov & Talanov, 2010a,b,c; Ferraris et al.,
2005).

By operating the modules, the design of new materials is
possible. There have been many approaches to solving this

pure rotation of the octahedra.

problem (see e.g. Zvyagin, 1993; Blatov et al, 1994; Shev-
chenko et al., 2009; Zheligovskaya & Bulenkov, 2008a,b; Ferey,
2000; Ivanov & Talanov, 2010a,b,c; Ferraris et al., 2005;
Dornberger-Schiff, 1964; Talis & Koptsik, 1990; Burdett, 1980;
Glazer, 1972, 1975; Woodward, 1997a,b; Bock & Miiller, 2002).
We select group-theoretic methods as the most accurate for
the listing of new structures (Gufan, 1982). Dornberger-Schiff
(1964) introduced the concept of ‘OD structures’ (order—
disorder structures). Her method is limited and applicable to
those cases where the modules are connected by certain
operations of partial symmetry (they cannot transform the
whole structure into itself). In works (Alexandrov et al., 1981,
Aleksandrov, 1976; Aleksandrov et al., 1976; Stokes et al., 2002;
Howard & Stokes, 2004, 2005) using group-theoretic methods
of the phenomenological theory of phase transitions, different
ways of solving the problem of designing low-symmetry
distortions of the possible perfect polyhedra packings arising
as a result of their rotation are proposed. Examples of such
low-symmetry structures are structures of the rotation in
perovskites (Shirokov & Torgashev, 2004a,b).

In terms of possible structures of the rotation, spinels are an
extremely interesting object of theoretical study. On the one
hand, in the spinel structure, in contrast to the perovskite
structure, the octahedra form a more rigid framework, as they
are connected not by vertices but by edges. Therefore one can
expect a significant reduction in the diversity of structures of
rotation in comparison with the perovskite structure. On the
other hand, the tetrahedra in the spinel structure can ‘freely’
rotate, as they are not related structurally to each other.
Therefore, we can expect the opposite effect — a large number
of possible structures of the rotation. Thus, two opposing
tendencies of rotation structures specified by the geometrical
singularities of spinel structure require detailed investigation.

There is another circumstance that makes a theoretical
study of the possible structures of the rotation in spinels more
important and topical. This is due to the fact that a significant
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Figure 1

Tetrahedra and octahedra in the spinel structure: (a) polyhedral
representation, (b) packing of the tetrahedra, (c¢) packing of the
octahedra (view along the direction [111]).

number of spinels contain atoms A and B that are transition
elements in orbitally degenerate states. According to the
Jahn-Teller theorem, any configuration of atoms or ions
(except linear) with a degenerate ground electronic state on
the orbital angular momentum is unstable with respect to the
displacements that lower the symmetry of the configuration.
As a result of removing the electron degeneracy, tetrahedra
and octahedra, in the centres of which there are the cations A
and B, have to become distorted. If the concentration of the

cations of transition elements is sufficient, then at a certain
temperature due to the interaction of elementary distortions
the cooperative Jahn-Teller effect arises — a structural phase
transition accompanied by deformation of the crystal. The
microscopic nature of a large number of structural transfor-
mations in spinels is precisely due to this effect (Bersuker,
1987; Krupichka, 1976). One of the structural mechanisms of
the cooperative Jahn-Teller effect may be a rotation of the
tetrahedra and octahedra.

The aim of this work is a group-theoretical study of struc-
tures of rotation of tetrahedra and octahedra in spinels.

2. Structures of rotation of the tetrahedra in spinel

Consider rotation of the tetrahedra in the spinel structure,
whose centres occupy Wyckoff position 8a. We restrict
ourselves to the task, including selected points ko (L), k1o (X),
k1, (I') of the Brillouin zone (designation given by Kovalev,
1965, 1993). Rotations of the tetrahedra in position 8a are
described by the composition of representations 7y (Fy,) for
the T" point (proper rotation) and permutational representa-
tion of position 8a in the extended cell. The translations of the
extended cell (a) are defined from equations exp (k,a)) = 1,
where k; are vectors of all beams L of stars {k}, entering the
channel of phase transition.

This composition consists of the following irreducible
representations:1

ko(Ty + 73 + 75 + 1) + kyo(1) + 1, + 1) + k(15 + 7). (1)

Rotation of the tetrahedra in the spinel structure can be
realized only as a displacement of the anions X, surrounding
the site 8a, which occupy a site 32e in the spinel structure.
Therefore, in the composition of the reducible representations
for such rotations only those irreducible representations (IRs)
may be included, listed in equation (1), that will be kept in the
mechanical representation, built on the displacements of the
anions X. The composition of the mechanical representation
for Wyckoff positions 32e of the space group Fd3m is as
follows:

ko(37, + 7, + 73 + 37, + 415 + 47¢) + k(473 + 27, + 37, + 31,)
+ kg (1,(Ayp) + 14(Ay,) + 75(E,) + w(E,)
+ 277(F2g) + 75(Fy,) + TQ(Flg) +2754(Fy,))- ()

From comparison of equations (1) and (2) it follows that the
order parameters (OPs) for the structures of the rotation can
be OPs that are transformed according to all representations
given in equation (1).

IRs ko: 15, T3 are four dimensional; ko: 5, T eight dimen-
sional; all IR k;o six dimensional; k;; one, two and three
dimensional. Consider an abstract 48-dimensional parameter

! The correspondence of designations by Kovalev and Miller & Love [which is
used in the program ISOTROPY (Stokes & Hatch, 2007)] is as follows: for ko
(L):ty — L1+,7p — L1—, 13— L2+, 14 — L2—, 75 — L3+, 14 — L3—; for ko (X):
T — X3, 7, — X4, 13 — X1, 14y — X2; for kyy (I'): kiyty (Arg) — GMI1+, kit (Ar,)
— GM1—, ky1t3 (Azg) — GM2+, ki1t (Az,) — GM2—, kyits (Eg) — GM3+, kyit6
(E.) — GM3—, ky1t7 (Fg) — GM5+, kit (Fp,) — GM5—, kit (Fig) — GMd4+,
kutio (Fi,) — GM4—.
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Table 1

Low-symmetry phases formed by tetrahedra tilting in the spinel structure.

Designations for order parameters: ko — 1; k1o — ¢, ki1 — & The superscript index after the closing parenthesis is the representation number according to Kovalev

(1965, 1993), & = [2 + (3'/2)]. V'/V is the change of primitive cell volume as result of structural phase transition. The phase of pure tilting is given in bold.

Translations of
primitive cell of

Phase OP Improper OP Symbol of space group V'IV  the Fd3m structure
1 (5 -£¢8° & —¢ E) R3 (No. 148) 1 a;, ay, a;
2 (& -£8° (&, S &)’ R32 (No. 155) 1 a;, ay, a;
3 (0, & 0)® (&, £€)° I42d (No. 122) 1 a;, a,, a;
4 (0, & 0)° (&, sg)‘ I41/a (No. 88) 1 a,, 2, a;
5 (£.&0° (&, S) (0,0, 8’ (S —£0)" Ima2 (No. 46) 1 a;, ay, a;
6 (&,0,8)’° (&, €€)° (&1, &, — 1) C2/m (No. 12) 1 a;, a,, a;
7 (61, &, &) (&1, 52) (1, &, 53) P1 (No. 2) 1 a;, a, a3
8 (0, &1, &) (&1, Ez) (&0, 0) (&0, 0) (0, &, 52)10‘ Cc (No. 9) 1 a, &, A3
9 (&1, —61, &)° (&, c —&)° ()S —£)° (&1, —£1. &) (5. £ 0)° C2 (No. 5) 1 a;, ay, a;
£0
10 (0, 0, n, 0)? (&, —¢&, &) R3¢ (No. 167) 2 a;, 2a,, a3
11 (0, 0, n, 0) (&, —¢& &) R3¢ (No. 167) 2 a;, 2a,, a3
12 (0,7,0,0,0, 7,0, 0)’ (0,0, 1,0y (5 —&)° (&1, —£1.0)" (5, £ 0)° C2/c (No. 15) 2 a;, a, 2a3
13 (0, 1,0,0,0,n,0,0)° 0, 1,0, 0)* (&, —=&)° (&1, &1, &) (£, &, 0)° C2/c (No. 15) 2 a; + as, a, + as, 2a;
14 (¢, 9, 0,0,0,0)* (&, —£)° (0,0, &) Pbnn (No. 52) 2 a;, a, + a, 2a;
15 0, ¢, 0,0,0,0)! (&, =) (&, —&)° P4,22 (No. 91), P4;22 (No. 95) 2 a;, a, + a, 2a3
16 (¢, =9, 0,0,0,0)! (&, —£)° (0,0, &) Pcnm (No. 53) 2 a;, a, + a3, 2a3
17 (@, 0, —0, 0, —p, 0)* P4332 (No. 212), P4,32 (No. 213) 4 a; + a, + a3, 24, 2a;
18 (0,0, , 0,0, 0) (&, €&)° (£, ££)° P4,2,2 (No. 92), P4;2;2 (No. 96) 2 a, + as, a,, 22,
19 (@, 9,0, 0,0, 0) (&, —£)° (0,0, &) Pcmn (No. 62) 2 a, a, + a;, 2a;
20 (1, ¢2.0,0,0,0) (& —§)° (5, —9°(0,0,8 (0,0, &)° P222, (No. 17) 2 a;, a, + a;, 2a3
21 (0,0, g1, 9, 0,0 (£ €)° (& €5)° (0, £,0) (0, €, 0)° P2,2,2; (No. 19) 2 ay+ay @, 2a
22 (0, ¢1, 0, ¢y, 0, —(pl) (0, ¢, 0,0, 0, —gz))2 (&, 85)5 (&, 85)6 P4;2,2 (No. 92) P4;2,2 (No. 96) 4 a, + a, + az, 2a,, 2a3
23 (9, 9, 0,0,0,0) (¢, ¢, 0,0,0,0)" (& —8) (5. —&1. &) (5,6, 0)° P2/c (No. 13) 2 a;, a; + a;, 2a3
(‘/73 @, 07 03 Os 0)1 (S Ss 0)‘ ((/7, @, 07 0’ 07 0)4 (Sﬂ _5)5 (El! _517 §2)7
(W, @, 05 05 Os 0)4 (5 gs 0)J ((17, @, Os 0» 0’ 0)](53 _E)s (Sl# _Sl’ 52)7
24 (0,0, @, @, 0,0)* (0,0, @, —g, 0, 0)" (&, €8)° (0, &, 0) (£,0, —=&)* (£, 0, &)"° Pnc2 (No. 30) 2 a, + a;, a, 2a;
(07 07 @, ¢, 0’ 0)4 (év 0’ _5)8 (07 01 @, —, 07 0)1 (E! SE)S (07 g? 0)7 (%‘a 0’ 5)10
(0,0, 9, —9,0,0)" (£ 0, —&)° (0,0, 9, ¢,0,0)* (& £)° (0, £ 0) (£,0, 6"
25 (9, 9, 0,0,0,0) (¢, 9,0,0,0,0)* (& —8) (b1 &1, &) (£,£.0)° P2,/c (No. 14) 2 a;, a; + as, 2a3
((p’ b, 0’ Os Os 0)4 (Ss ss 0)‘ ((ps @, Os 0’ 0’ 0)2 (Ss _s)i (Slv _Slv 52)7
(9. ¢,0,0,0,0) (& & 0)° (9. 9,0,0,0,0) (5, —&)° (&, —&1. &)
26 (0,0,0,0, ¢, 9)' (0,0,0,0, g, @) (&1, &)’ (£, 0,0) (& 0, 0)° P2,/c (No. 14) 2 a, + a,, 2a,, a;
(07 07 O’ 0’ @, ‘p)] (Ss Os 0)9 (07 Ov Ov 0, @, (p)Z (Sl’ 52)5 (S’ 07 0)7
(0,0,0,0, 9, 9)* (£ 0,0)° (0,0,0,0, 9, 9) (5. &) (£.0,0)
27 (0,0,0,0,0, )" (0,0,0,0, g, 0)* (¢, £)° (¢8, £)° (s, 0, 0)g (&0, o)”’ P4, (No. 76), P45 (No. 78) 2 a; + a, 2a,, a5
(0,0,0,0,0,9)' (£0,0) (0,0,0,0, ¢, 0) (¢8, S) (€8, E) (£,0,0)"
(0,0,0,0, 9,00 (&0, 0)9 (0,0,0,0,0,9) (¢§, &) (85 £)°(£0,0)"°
28 (¢, 9, 0,0, Oé 0)* (¢, ¢, 0,0, 0, 0)* (&, €8)° (0, &, 0) (£, 0, &) Pna2; (No. 33) 2 a; + az, a, 223
(S# 0# _S)

of the order with composition as given in equation (1). From
the calculations it follows that, with such an OP, 164 types of
low-symmetry phases can exist. Among them there is always
the lowest-symmetry phase in which all 48 components of the
OP are nonzero and between them there are no relations.
These phases can be realized not only by a set [equation (1)],
but also by a large number of variants of representations from
the set [equation (2)]. Therefore there is no reason to consider
that this phase can be obtained by the mechanism of rotation
of the tetrahedra, although it is in the list of low-symmetry
phases.

Consider, as in Shirokov & Torgashev (2004a,b), only the
structure of the rotation, i.e. such distortions of the tetrahedra
that will make them equivalent. This condition means that, in
the model considered, rotation of the tetrahedra should not
lead to their ordering. For this purpose, from a complete list of
164 low-symmetry phases, we choose only those that satisfy
this requirement. These phases will number 28. The para-

meters for them are given in Table 1. The second column of
Table 1 shows the OPs which determine the symmetry of the
low-symmetry phase. In the third column the improper OPs
are given, ie. the parameters of the order which appear due
to nonlinear interaction with the main (critical) OP. Phase
numbers 1-21 are characterized by a single OP transformed
according to one irreducible representation. Phase numbers
22-27 are characterized by two OPs and phase number 28 by
three OPs. Phase numbers 22-27 with two OPs can be realized
in different ways in which the main parameters of the order
are two of the OPs given in the third column. Each of these
phases can be realized by any pair of three OPs, taking into
account the improper OP (see Table 1). A question of
choosing the OP in this case will be the quantitative question,
i.e. any two of OPs with the highest meaning in absolute value
are chosen. But for phase number 28 the situation is different.
Any pair of three OPs shown in this table (G No. 28) changes
the symmetry. Therefore, this phase is a phase with three OPs.
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The connection of the OP for the obtained low-symmetry 3. Structures of rotation of the octahedra in spinel
phase caused by tetrahedra rotation with the displacements

of spinel atoms is given in Table 2. If an IR is included Consider rotation of the octahedra in spinels. In the spinel
several times in the mechanical representation then different structure the centres of the octahedra are located in Wyckoff
kinds of connections for one OP are written in square position 16d. For the composition of representations — 7o (F,)
brackets. for point ky; (I') of the Brillouin zone and permutation

Table 2

Connection of order parameters with atom displacements in tetrahedra rotation structures.

Designations for order parameters: ko — 0; ki — ¢; ki1 — & The superscript index is the representation number according to Kovalev (1965, 1993). If this irreducible
representation is included several times in the mechanical representation then in this case different expressions for OPs with the same symmetry are given in
square brackets. Designations of Wyckoff positions of coordinates: a; = [0, 0, 0], d; = [7/8, 11/8, 1/8], d, = [13/8, 3/8, 3/8], d5 = [3/8, 13/8, 3/8], ds = [11/8,11/8,5/8], e, =
[9.9.9l.e2=[1/2—4.1/2 = q.ql.e3=[—q. =q. ql. es =[-q — 1/2. —q = 1/2,ql. e =[—q + 3/4. —q +3/4, —q + 1/4].es = [q + 1/4,q + 1/4, —q + 1/4], where
q is the free parameter of Wyckoff position 32e. Additional indices x, y, z correspond to coordinates of atom displacements in the low-symmetry phase relative to
their positions in the high-symmetry phase. Wyckoff positions in low-symmetry phases have been emphasized in bold italics.

Wyckoff position
Phase 8a 16d 32e
1 2(c): 1(b), 3(e) 2(0), 6(N:
57 = 4ay, ‘51 = —2(3]/2)(_61x +epy + e+ ey),
£ = [2(eix + €20 — €1y + €12), 227 (e, — e2)],
Eg = 2(21/2)(81x + ely)
2 2(c): 1(b), 3(e): 2(0), 6(f:
& = day, &= 4d;, £% = 22" (er + ery),s
El = _2(3]/2)(_61x tey tep;;+ er)x
£ = [2(eix + €2r — €1y + €12), 227 (e1: — e2v)]
3 4(b) 8(d): 16(e):
58 = —8d,, 58 = —4(2'2) (e + e1),

&' = 8/(3V%)(er, — €1y — e12),
£ =2[1 — 13')]Q2ey, + e1x — e12)
4 4(a) 8(@) 16():
£ = —42')(ey; + ey,
51 = 8/(31/2)(C1x — ey — ez,
& =2[1 — 1/(3V2)](2ey, + €1, — e12)

5 4(b): 4(a), 4(b): 4(b), 4(b), 8(c):
57 =4ay., 58 = 2(—d, + dy + dy2), 58 = —(21/2)(31z t ey — € — et ey t €7y),
gw =4ay, ém = [2(21/2)(dlx + day), 51 = 2/[(31/2)2](291x — ez — 2ex, + 2e7, + 2e7, + 2e7, — €:),
2(—dyy + dyy — dy)] £ =2/(3Y%)(er, + €7y + €1 — 287, + €1, — € + €3,),

S:(): [2(elz + e + 2371)7 2(21/2)(31x — €7y — € — e7,v)]a
E = [2(61,( + e + ey — e7y)* (21/2)(617 — €1x — €7t 7y — €3 — e7y)]

6 4(): 2(b), 2(d), 4(H 4(@), 4(3), 8():
517 = day,, 59 = (2]/2)(6&( T gy — €yt €t et ely)a
& = day, g' = —2/(312)(2e5, — 2e5, + 265, + 2e5, + €5, + €1, — 2e1),
£ = —[1 — 1BY)](ex + €5, + €2, — €1, — €1, — €5, + 2¢3,),

Sl: = [2(elx + ey — € + eSx)’ (2]/2)(_8& - eSy t ey — € — € t+ ely)]v
£ = [2ery + 2e5y + e5y), —2(2'7)(ege — €20 — 2. — €1)]

7 2(): 1(e), 1(), 1(g), 1(h) 2@, 20), 2(i), 2(i):
&’ =4a,,, ‘519 = —(2")(e7, + egy — €3y — €y + €. — €. — €7 + €g),
527 = dayy, 529 = (21/2)(*611 + e — €1 — €y — €7+ e + ey + €g2),
537 =da,, 539 = (21/2)(€7y —egy — €yt €1yt e — € — €7 F ey,
51 = _2/(31/2)(_61.\7 t eyt ezt ey — €y t ey — €7 — €7, — €7, F ey t gy — es:),

515 =[1+ 1/(31/2)][€7x — 2e7, — ey + €7, — 2e3, — €5 + €1 + g, + 2e1, — €2 — €1
+2e5, + (3Y%)(e7, — €7, + €2y + €2, — €5, — €1, T €1, — eg)],

& = [1 + UGBV [—eyy + 2e2 — €1, — €52 + €7, — 2€7, + 2€g, + €7, + €2, — 2€1, — €,
+ g, + BV (e + €1, + €2, + €7, — €5, — €7, " €1 — €5))],

517 = [2(e1x + e + €7, + e3y), (2]/2)(_37y — gyt ey te te— ey —et es.)],
& = [2(e1y + €2y + €7y + €5,), —(212)(e1; — €2, — €1, — €n + €72 + €7, + €5 — €5.)],
537 = [2(er: + e + €7: + e52), (21/2)(—€7y + gy + €y — €1y + e — €5 — €7, + €g,)]

8 4(a)7: 4(a),84(a): 4(a),84(a), 4(a), 4(a):

£ = 4ay,, = 2—diy — dy, + dyy + dy), 518 = 7(21/2)(7641 ey, — €y + e+ ey + €3 + €y + €1),

& =day,, & =2(—d, + dy — dy — dZy)a & =—(2 / )(€4y — €3yt € — €y t ey — €3 + e — e,

Szm =da,, 51]0 = [2(21/2)(d1y + day), 51 = 2/(31/2)(31x — €1y — €1z T €t €y — €y — €3, + €3y F €3; + €4y — €4y F €4z)s
2dy, — dy; — doy + dy2)], 2= [—1 +1/(BY2)][<2e1, — €1y — €1, + 2ea, + €2y — €n; + 23, + €3, + €3, — 2e4,

z z y < y z Yy z

5210 = [2(2]/2)((112 + d21)7 - e4y + ey + (31/2)(_elx — €zt e — €yt e3t €3 — ey t+ 641)],
2(—dix — dyy — doy + dZy)] 525 =[-1+ 1/(31/2)][_‘31x — 2e1y + ez + ex + 2€y, + € + €3 + 2e3, — €3; — eq — ey,

— ey + (31/2)(—81}, e+ e+ e ey — ey — ey — ey,

57 = [2(e1x + €2 — €3 — e4y), _(21/2)(_341 t ey + €3, + €3, + €y — € — € — ely)]7
£ = —(2Y%)(eq + €4y — €3, + €3, — €2; — €3y + €1, — €1,),

"= [2(e1y + €2y + €3y + €4y), (2'2)(e4: — €3 + €2, — €1, + €4y + €3, + €3 + €1)],
5210 = [2(612 t e +e3; + 642)3 _(21/2)(_e4y + e3y - eZy + ely Tt €4y — €3¢ t €y — elx)]
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Table 2 (continued)

Wyckoff position
Phase 8a 16d 32e
9 4(0):7 2(a),82(b), 4(0): 4(0),84(6), 4(c), 4(0):
517 =4(ay, — aly)s El‘ =di + dly +2dy; — dy — ds,, 518 = —1/(21/2)(25& + egy, — 2e7; + €7, — €y — €1, — €3, — €1y + ey + e7x),
&' =4ay,, z =2(—dy, + dyy, — dy + ds,), & = (21/2)(6’8x —egy t €7, — €yt ey — €+ ey — e,

f = (3'2)(diy — diy — doy + d3y),
[(21/2)(d1x + dly + dyy + dsy),
dlx +dyy — 2dy; — dy — ds,]

SIO = 2(alx + a]y)

10 4(c): £ = 4ay, 2(b), 6(e):

=43,

11 4(0): £ = day, 2(a), 6(d)

12 8():
7 = 2ar, + ayy),
517 =2(ay — aly)a
527 =day

4(), 4(0), 4(d), 4(e):
1 = 202'2)d,

13 8():
0’ = 2ar+ an),
& =2(ar, — aly)a

4(@d), 4(e), 8(P:
7)2 = 4/(31/2)(d1x +dy; + dy),
n° =1{(2/3)"*[2ds, — dy. — di,

527 =4ay, + (31/2)gdlz —dyy)],
= (2/3)"[2ds, — dy; — dy,
— (3"2)(dy, — di)], 2(2")d,,}
14 4(): 4(a), 4(d):
57 =4ay, ‘/7 = —ddy,
15 4(): 4(a), 4(b):

901 =da,, Sal = —4(dy, + d3y),
£ =202"2)(dy, — o)

16 4(h): 2(a), 2(d), 4(g):
(pl = 4ay,, <ﬂl = 4d,,
£ = 4day,
17 8(c): 4(a), 12(d):
@' = 4day, @' =4d,,
18 4(a): 8(b):
@ = day, = [H(d1, — di2), —4Q2'7)d, ),
£ =21 - By + di2)
19 4(): 4(a), 4(c):
¢ = 4ay,, ¢ = [—4da, —2(2'%)dy,]
§7 = 4a1z

Sl —2/(312)(—e7, — €7, — €7, + €g, + €5, — €3, — €1, + €1, + €, + € — €, + €3,),
f 1/(31/2)(25& — 2eg; + €7, — €3 — €y + €1 + €y + 201 — 2€7; — €1, + €7 — eSy)
56 —€gy + €7y — €7, — €3y + €1 t €3, + €1, — €y,
£ = [ + 2 — ey — €3y + 7 + ey, — €3y — €7, (21/2)/2(—exy — e — e
- elx — 2e5; + €3y + 2e1; + ey + eSx + ez,
52 = [2(e1; + e + e7; + eg2), (21 )(6& + gy — — €yt e+ ey — ey —
E = (2]/2)/2( —egy — €7, — € — €1, + 2e5. + €y — Zelz + ey + e + egy),
E'0 = [er, + e + €1y + €gy + €7, + €5y + €5y + €7y, —(21/2)/2(—2eg, + €5, + 2e7, + €3,
— €y — €1y — €3y — €1y t g + e7.)]

12(f), 4(0):
772 = _2/(61/2)(31x + e1y),
51 = 2(31/2)(—6’u +epy + e+ ey),
£ = [2er + €20 — €1y + €1), =227 (€20 — €1,)]

67):) ] ’

4(6), 12():

= —2/(6"?)(ey, + e,),
‘f 2(3]/2)( —ei + ey + e+ e),
£ = [2en + ear — €1y + 1), =22 (e — e12)]
30’% 8, 80, 8(H:
1 = {—(esy + e72), UGBV 2e7, + 2eq, + €7, — €2, — €5, — €2, + (3%)(e7, + €2, — e,
+e)], [—1 + U(3BY)][es, — 2ea, + €7, + €ge — €7, — e, + (3Y2)(—en + €7y + €50
+ eZv)] 2(el)c + ely)}
77 = 2(2/3) (€2 + €3y + €7, — €7 + g + €52),
5 2/(31/2)(_67)1 — €77t ey + gy — €yt €1y + €1+ € — €y + €2 — €1y — €7:),
S 1/(31/2)(2614 + 87} + 2621 — €t e — 2e$z — ey t eZy - e8v - 2e7z - ely + e7x)
£ = [ere + €x — €1y — €5y + €7, + €5, — €7, — €8, (21/2)2(—e7, — €5, + 2e1, + €2y
- 262z — €y — eyt ey tent+ eso)],
52 = [2(e1; + ez, + €7, + eg2), (21/ )(— er7y + eSy + eZy teix — € — €1y —
£ = 22— €7y — ey — 2e; + €y + 2ep; — €1, — €y + €1y + €70 + €3y)
30’% 8N, 8, 8
n° = {—2(er + eSy) 1/(3'%)2e7, + 2es, + €7, — €3,
+ ex)], *1/(31/2)[23& + ey, — €y — ey — eg; + 27, +
2(61x + e]y)}
77 = 2(2/3)1/ (€2 + €3y + €7, — €7 + g + €52),
-‘;:1 2/(31/2)( €7y, — €77 t €y + gy — €y + €1y + €1+ € — €y + €2 — €1y — €7:),
£ = 1/(3'7)(2ey, + e7y + 2y — €xc + €1 — 2€8z — g, + ey — €y, — 207 — €1y + €7,),
51 = [e1x + exc — €1y — €3y + € + ey — — €3y, 1/(21/2)( —e7, — egy, +2e; + ey
- zezz — e — €y + ey + e + ey,
52 = [2(e1; + ea; + €9; + es), (2'7)(—eqy + €5, + eZy e — e —
= 1(Q2Y*)(—e7y — g, — 2e1, + €2, + 2€5, —
8(e), 8(e):
4 = [2(e + €1y + ey — €7y) 2(—e1y — €1y + €7y
51 4/(31/2)( €1z + eg + €7, + e, + e — eyy),
£= 2/(31/2)(€7y +en + e — 26, — ey + 2e1),
‘57 = [4(ei; + e72), _2(21/2)(—91x t ey + et €7y)]

7, + ego)],

—es. — o + (37 (e, + €y — €3
(31/2)(7871 - eZy — € t eSz)]v

ely — ey t eSX)]’
— €y t ey + e + esy)

- €7y)],

8(d), 8(@d):
‘ﬂ = [4(ery + €3)), dlers + €20), 4(—e1; + €37)],
f 4/(31/2)( —eiy + ey + e+ ey — €y + e),
=2/(3Y?)(2e2, + €1, — €2 + €3 + 2e1, — €1,),
56 =2(e1x — € — €y t+ ely)

4(h), 4(h), 8(i):
1 =[2(e1x + €2 — €7 + €7y) 2(—e — e + €7y — e7.), 2(e1; — ez7)],
=2/(3%)(2e7, + 2e7, + 2e7, + 2e1, — €1, — 2e2, — €3.),
5 = 2/(31/2)(32 —2e;, — ey te e e+ e7),
57 = [2(812 + ey, + 2672)7 _2(21/2)(8736 + €7y + ey — elx)]
8(c), 24(e):
= [2(e1x + €1z + €3 — e1y), 2(e1y + €10 —
g = —2(3'%)(e1; + €1y + €3 — €1x)
8(b), 8(b):
f/’z = [d(—ei; + es), —4(erx + €24), 4(ery + €2))],
Sl = _4/(31/2)(_81,( + €1y te; + ey — €2y + 821),
£ =[—1+ 1U3BY)](er; + €1, + €2, — 2e1, + €3, + 2e3),
56 =[1 - (31/2)](81x +e; — ey + )
4(6), 4(0), 8(d):
= [2(e1x + €2 — e7c + €7y), 2(—e1r — €x + €7y — e7,), 2(e1; — e27)],

es — ey,

e+ er;), 2(e; — €1y

= 2/(31/2)(26’7 + 2e7, + 2e7. + 2e1, — €. — 25, — €32),
S = 2/(31/2)(32z —2e;; —eptep e e+ 1),
£ = [2(e1; + e, + 2e7.), —2(2'%) (e, + e7, + ex — ey)]
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representation constructed at Wyckoff position 16d in the
extended cell on vectors ko (L), kjo (X) — we have a set of the
following IRs:
kit + 1+ 5+ 55+ 7%) tko(n+ 5+ 55+ 1)
+ k(5 + 75+ 1 + 7). 3)

Table 2 (continued)

From the representations of equation (3) it is necessary to
remove only kq;: T3, which is not included in the composition
of equation (2). In the permutation representation at Wyckoff
position 16d the following IRs are included:

ko(t; + 74 + 75) + Kyo(7y + 73) + Ky (77 + 7). 4)

Wyckoff position
Phase 8a 16d 32e
20 4(8)-'1 2(a),12(b), 2(c), 2(d): 4(e), 4(e), 4(e), 4(e):
</711 = day,, </71] =2dyy — dye — d3, — dsy), (/71] = [2(e1x + exc — €75 — egy), 2(€1y + ey + ey, + eSy): 2(er; — e, + €7, — eg))],
@ = 4ayy, ¢y =2(=diy — dy — da + dsy), 0y = [2(ery + €3y — €7, — egy), 2(€1x + € + €7, + €51), 2(—e1; + e, + 7. — eg.)],
57 =da,, 776 = (21/2)(d1x — dy + di, + ds,), 51 = *2/(31/2)(81y — @7y — €7y — €7, + €y + gy + €1 + € — €y + € — €5, — ey),
58 =2(—dix — do + d5, — ds,) 55 = 1/(31/2)(_62x — g, + 2e1; — 2eg. + €7 — ey, + ey + €1 — 2e7. + 2e5 + €7, — es,v),
56 = €7 — gy — €2y t €1 F €y + €1, — € — €7y,
57 = [2(e1; + ez, + €7, + eg2), (21/2)(61x — €y t €y, — €7y + €3 — €1y + gy — ez,
58 = (21/2)(91x — € — €y, t €7, — €, + €1y, + ey, — e7x)
21 4(a): 4(a), 4(a): 4(a), 4(a), 4(a), 4(a):
<P2 =day., §012 = [2(dix — di; — dsx — d3.), @1” = [2(—eyz + ex; + €3 + esy), 2(—er — e + e3; — €52), 2(eny + €y + €3y + €6y)],
57 = 4day, - 2(21/2)(d1y + dsy)], sz = [2(e1x — €xc — €3; — €62), 2(e1; + €2, — €3 + €qy), 2(e1y — €2y + €3, — €gy)],
@ = [2d1y — di, + dsy + dag, él =2/(3"2)(es; — oy + €6x + €3, + €3, — €3 — €2, + €3y — €2 — €1, — €1, + €1),
- @) (dyy — d3y)], £ =[1 — UGB 2eer — €2 — €r0 + €6, + €3, — €1, — €3, + €1, — 2e3, + ey,
n=[1- (31/2)]/(21/2)(d1x +dy; — 2e5, + 265)})#
+ ds, — ds), £ = [1 — UEY))2(es, + €2, — €gr + €15 + €3, — €2, + €12 + €62),
58 =2(—dy — di; + d3, — d3;) 57 = [2(31y + €y — €3y — ), (21/2)(—31z + e+ e+ e+ e — € — €3 — €6y)l,
£ = (2'2)(—e1; + €2, — €3, — €2 — €1, + €6; — €3, — €61)
22 8b): 4(a), 4(a), 8(b): 8(b), 8(b), 8(b), 8(b):

(/7; = z(aly - alz)’
¢ = —2(ay, +ay;)

23 4(g):
(pl = z(alx + a]y)v
517 =2(ar, — llly),

§27 = 4alz

24 4(c):
fpl =2(—ay, + ayz),
§7 = dyy,

510 =2(ay, + a1;)

25 4(e):
</’2 = 2(ay, + ayy),
517 =2(ay, — aly)v
527 = 4alz

§01] = —dyy — doy — 2d2y + dy,

+ dsy,

§021 =2(—d — dy — dy; — dsy),
§02 =[—di — dp + 2d,, + d;
+dse, QV)(—dix + doy — do, +
de)]s

1° = [1 = G2 dy — day
— dy; + ds,)

2(b), 2(d) 2(e), 2():

¢ = 2(—dy, + d3,),
Wl =2(—dy — dsy)

2(a), 2(b), 4(0):

§04 = 2(—d, + dyy),
‘pl = 2(d3x - d3z)v

58 = (dix + doy — ds,
— 2d3, — ds;),

£0= [@Y2)(dyy + doy + ds, + dy),

—dyy — dy + d3 — 2d3y +ds.]

2(0), 2(d), 4(e):

‘Pz =2(di, — dyy),
¢ = [z(dlv + dly)a 2(21/2)dlz]

O = (e1y + €2y — €1, — €y — s + €, + 5 + €4y, 1y + €2y + €1y — €4y — €5, + €
— €s5; t €4z, — €1t €y — €1t €4y — €5; — € t E5c + 34x)s

‘p%l = [2(_61)( teo + ey + eSz)a 2(elz — €y — €4 35,\-), 2(ely + €2y + €4y — eSy)]:
¢ =(—eyy — ey — e —
+ €yt s, — €4, €1 — €y — €1, + €y — €5, — € — €5, — €4y),

El = 2/(3]/2)(31)( - ely — €y t eZy — €yt ey — e4y t ey, — s t+ eSy tes; — elz)s
& =[—1+ UBY))2(er, + €2 — €4z + €12 + €5, — €5, — 2e1, + 2€2, — €4y — €1,
— 2eyy + 2esy),

56 =[1 - 1/(31/2)]/2(621 — eyt esp et es; + ey — et ey)

€4y — €5y + €3, — €5y — €4y, — €1 — €xx T €1, — €4y, — €5y

4(8), 4(8), 4(g), 4(3):

<ﬂ4 = (e1x + €1y — € — €y + €7, — €7, — €y + €y, — €1 — €1y + €y + €y + €7, — €7,
— €gy T €3y, €1+ o + €1y T €3y — €7 — €y — €5y — e7y),

@' = [ery + eay + €1+ e F ey + gy + egy + €7y, 2(e7, — e3.)]

fl = —2/(31/2)(31z + €y — €yt €y — €7y — €7, —e7; + €, — eyt e — e+ esx),
55 = 1/(3]/2)(32y — g — €1y + e + 2e; — 2e7; + 2e1; — e — 2eg; — e€g, + €7 + e7y),
517 = [e1x + ex + €7, + € — €y — €1y — €gy, — €7y, 1/(21/2)(*2‘% +2ep; — ey — ey,
— eqy + ey +egy — e + e+ egy)],

527 = [2ey, + 2e,, + 2e7, + 2eq., (21/2)(—ezx — €7 T eg t+ €3, — ey, t € — et e,
fg = 1/(21/2)(2321 —2e1; — ey —egy — eyt eyt ey — e+ eg + esy)

4(0), 4(c), 4(c), 4(0):

@' = (e1x + €. — exc+ €y — Cqp + €4y — €5, — €55, — €1z — €1y — Cqp + €y + €5y
+ €5, — ey + ezz),
@ = (=€ + ey + ey + €5 — ey — €5+ € — €y, —C1p —
- 9 9
. es, + e, + ey, 2eq, + 2es,)
12
és =2/(3 / Yew — e1y — ez — exy + €5y — €, + ey — 4y + €4 — €5, + €5y + €52),
S = [=1 + 1/(3"2)])/2(—eay + 2es, — €5, + €n¢ + €1, — 2€1, + €2, — €a; + €5 + 205
34 Z z y 74 Z Y
- 2e4, — e1y),
12
Ss = [2(ely + €2y — €4y — eSy)7 _(2 / )(elz — €t ey — €5 — €yt 5 — €t e4x)]:
172
510: 12 / )(264)) +2e — et eyt ey — €5, — et eyt ey — es.),
1/2
E'0=[en, + ex + €1, + € + €5 + €qp + €5, + €5, —1(2V2)(—2e4, — 2¢5, — €1, + €,
t ey — sy — e T eyt Ey — eSx)]

€x T €4z t €57 F €y

4(e), 4(e), 4(e), 4(0):

‘P4 = (e + €1y — €y — €3y t €7y — €7, — €3¢ T €3y, €1y T €1x — €3, — €3y — €3, t+ €gy
+ ey — e7),

‘/’2 = (e1x + €ax — €7, — €5 + €y + ey —
+ egy + egy, 207, — 2eg:)

51 = —2/(31/2)(—e7x — €7y — eyt eyt egy — €y + ey — €t e+ €+ e — eZy)a
£ = UBY?)(—ey + 21, — 2e5. + €1, — egy + 26, + €2y — 2e7, + €7, — €1, + €7, — €g,),
517 = [e1x + exc — €1y — €3y + e + €z — €5, — €7, 1/(21/2)(—98y — eyt ey ey — ey
— ey + 2e; — 2e5; + e + €3],

&' = [2(e1: + e2: + €72 + e52), (21/2)(68y — €7y + €y — €1y — €7, + g + €1 — €2))],

g = 1/(2]/2)(—38y — gy + ey ey — e — € — 2e1; + 20y + €7, + €g,)

esy — €7y, €1, + €y + €7, + €3, + €, + €1
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Table 2 (continued)

Wyckoff position
Phase 8a 16d 32e
26 4(o: 2(b), 2(d), 4(e): 4(e), 4(e), 4(e), 4(e):

(pl =2(ay, + ay;),

(p2 = 2(al_v - alz)7

57 =4a,,
27 4(a):
(pl = 4[112,
<p2 = da,,
28 4(a):
<P2 =2(—ay, + ar2),
§'7 = dyy,

EIO = 2(alx + a]z)

go; =2(dy, + d.,),
¢ = [2(d1y - dlz)v _2(2]/2)d1X]

4(a), 4(a):
Sﬂi =2(dyy + dy; — dsy — ds;),
¢ = [z(dlv - dlz - dSy + dSZ)w
2(21/2)(*d1x +dsy)],
£ = —[1 + 3"))I2"?)(dy,
+dy; + dsy + ds;),
£ = 22")(di, + dsy),
2(dl_v - dlz + dSy + dSz)]

4(a), 4(a):
‘ﬂz =2(ds, — dsz),
¢ = [2(dix = di2), =2(2')dy),
& =d — dy; — d3, — 2d3, — ds,
Sm = [(21/2)(‘11)( + dlz + d3x + d3z)s
—diy — di; + ds — 2d3, + d3.]

1
¢ =lery —exy ez — ey e —

_2641 — €3, 2(elx + 63.»‘)],

¢ = [ely — €y — €3t €y — €t € — €4y t €3y,
— ey — €3, 2(—ex — ea)],

El = 2/(3]/2)(_611 + e — ely — € — €y — €3t e3y + ez + ey — e4y + ey + eZy)a

£° = [—1 + UBY?)|[—eqy + €4, — 2e1, + €5y — €2, + 263, + €3y + €3, — 2e4, — €1, + 22,
— et (31/2)(e4z — ey T € F €3t €3 — €y + € — elz)],

& = —1/(3'2)[2e. — €3, + €3, — 2e5;, + €4 — €1, — € + 201, —
+ (31/2)(63): ey, — eq — €1y + € — ey, + €, — e1,)],

57 = [2e1, + 2e5c — 2e3, — 2ey,, (21/2)(—921 tep+ ey — ezt eyt ey — ey — €3y)]7
59 = (2]/2)(€2z — €1z — €4 T €3+ eyt e — ey — e3y)

€7 — €4y t €3y, —€1; — €y — €3, — €4, — €1, — €3

—€1; — €y + €3y t+ eyt eyt ey

ey — 2e4; + €5 + €y

4(a), 4(a), 4(a), 4(a):

‘ﬂl =[2(e1; — €. — €4y — €5y), 2(—€1y — € — €y t es.), 2(ery + ex — eq — esy)],

@ = [2(e1y — €3y + €4z + €5), 2(—e1, — €x, + €4y — €5), 2er — €a — Cur + €5))],
‘fl = 2/(31/2)(95z + €5, — €5yt €4y — Cqy + €y — €3 + €y — €3 — €17 — €1y + €1y),
S = —[1+ 1/(3]/2)]/2(—eh + ey — 2e4, + €5y + €5 — €1y + 285 — €1; — ey,

+ 2es, + €4, — 2eyy),

£ = —[1 + 1/(3"*))/2(es, — €1y — sy + ey + €4, + €1, + €, + €3)),

Eq = _(21/2)(_61)' t ez — €y — € t €y + ey + 5, — 551)7

£§'9 = [2e1, + 26, + 264 + 265, (217)(e1y + €1, + €2 — €2, + €4y — €4, + €5, + €5.)]

oy

10

4(a), 4(a), 4(a), 4(a):

‘/’4 =(e1xt €1z — €+ €y — €y €y — €3 — €3, — €3 — €3; — €4+ €y €

+ e — € + €2),

‘ﬂz =[—ei + ey + ez — ey + ey, — €3, + €1 — €, —€1 — € + €3, + €4y — 4y

— €3 t e t+ e, 2(ely + e3y>]7

£ =1Q"P)(ese — erx + €4, + 2e4y — €3 + €y, + 2y, — €1, — €3, + €3),

El = 2/(3]/2)(_elz +en — Ely — €y — €y — €3 t e3y +e3; + es — e4y + ey, + eZy),

£ = [=1 + UEBV)]|2(—esy + erc + €5, — 2ey, + 2e5, + 2€3, — 2e4, — €1, + €3,

—e3. + e — ey),

57 = [2(e1y + €2y — €3, — euy), 1/(2'2)(—ea + €15 — €4 + €3, + €. — €1 — €3, + €2,)],
Em = [e1x + exc + €3, + Cqp + €1 + €y + € + e, _1/(21/2)(64)( — e+ ey — 2eqy — €3,

+ e, — 26y, — ey, — ez + )]

The OPs associated with the representations of equation (4)
will always result in an ordering of octahedra. According to
the chosen mechanism it must not exist, so it should be
excluded from the set of OPs [equation (3)] contained in the
composition of equation (4). Finally, a set of OPs for structures
of the octahedra rotation is as follows:

ko(T, + 75 + 76) + kyo(7, + 7) + Ky (T5 + 7). )

IRs ko: 7, are four dimensional; ko: 74 eight dimensional; kyq:
T,, T4 six dimensional; k;: 75 two dimensional; k;;: 79 three
dimensional. Thus, the overall dimension of the OP is 33. The
full list of low-symmetry distortions for the OPs [equation (5)]
contains 134 low-symmetrical phases. Of these, only five
satisfy the selected criteria. The OPs for these phases are
shown in Table 3. All phases are identified by only one OP.

The connection of the OP for the obtained low-symmetry
phase caused by octahedra rotation with the displacements of
spinel atoms is given in Table 4.

4. Discussion of the results

It is seen from the analysis of Table 3 that phase numbers 1
and 2 have no improper OPs. Therefore we can call these
phases pure tilting phases. The structures of these phases are
formed from the spinel structure by the particular oxygen
displacements that cause octahedra rotation. There are no

other displacements of oxygen atoms in these structures.
Phase number 3 (Table 3) has improper OP 75 (k;). This
representation is part of the composition of the representation
of equation (5), characterizing octahedral rotation. Therefore
this phase can be considered as the phase of pure octahedra
rotation too.

For the same reason phase number 17 (Table 1) is the phase
of pure rotation: it has no improper OP. This phase is the
phase of pure tetrahedra rotation.

In all other phases there are improper OPs that do not
characterize only rotation of polyhedra (tetrahedra and
octahedra). The phases of pure rotation in Tables 1 and 3 are
given in bold.

The most widespread phase transition in the spinel family
associated with rotation of tetrahedra is transformation with
the change of space groups Fd3m — P4332 (or enantio-
morphic to this group a group with symmetry P4,32). This
transformation is induced by a six-dimensional IR ko T,
(Sahnenko et al., 1982, 1983, 1986). The six-component OP has
the form (¢, 0, —¢, 0, —¢, 0) (see Table 1).

Critical IR kjo: 7; enters permutational (at Wyckoff posi-
tions 16d and 32¢) and mechanical (Wyckoff positions 8a, 16d,
32¢) representations of the crystal. Therefore, lowering of the
crystal symmetry is due to ordering of the octahedral cations
and anions and displacements of all types of atoms in cubic
spinel (Sahnenko et al., 1983). Calculations show that simul-
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Table 3
Low-symmetry phases formed by octahedra tilting in the spinel structure.

Designations for OPs: ky — ¢, ki; — & The superscript index after the closing parenthesis is the representation number according to Kovalev (1965, 1993); e = [2 +
(3'2)]. V'IV is the change of primitive cell volume as a result of structural phase transition. The phases of pure tilting are given in bold.

Phase ()3 Improper OP Symbol of space group VIV Translations of primitive cell of the Fd3m structure
1 &, €&)° I4,/amd (No. 141) 1 a, ay, a3
2 & &)° Fddd (No. 70) 1 a;, a, a5
3 o, &, 0)° (&, £€)° I4,/a (No. 88) 1 a;, a,, a;
4 (0, 0, ¢, 0,0, 0)* (&) (&, €£)° (£, &)° P4n2 (No. 118) 2 a+ as, a,, 2a;
5 (0,0, ¢, 0,0, 0)? (&, €£)° (£, ££)° P4,2,2 (No. 92), P4;2,2 (No. 96) 2 ai+ as, a,, 2a;
Table 4
Connection of order parameters with atom displacements in octahedra rotation structures.
Designations in Table 4 are the same as in Table 2.
Phase Wyckoff position
8a 16d 32e
1 4(a) 8(d) 16(h):
55 =41 - 1/(31/2)](91x + ey),
51 = 8/(31/2)(281)( - ely)
2 8(a) 16(d) 32gh5)._ §E) ~ ”
1= [2e); + e1x — ey, + (3"%)(ewx + eyy)l,
£ = —4/(3'%)[2e1; + €1 — ey — (32)(erx + el
5] = 8/(31/2)(91;( — ey — i)
3 4(a) 8(@) 16;{).7 @20, +
= Ix elz),
S] = 8/(31/2)(91&— — ey —er),
£ =2[—1 + 1UG)|(—er, — 2e1, + e12)
4 2(a), 2(d) 8(i): 8(i), 8G):
¢t = —4(dyy + dy;), @' = [4er + €12), —4(es, + €3],
£ =42/3)"(dy, + dyy — dy2), E =43 ere — €1y — €12 — e+ ey + €3),
56 =[1+ (3]/2)]/(21/2)(d1)( - 2d1y —di;) Ea = 4/(31/2)(61)( — €1y — €z t €3 — €3, — es:),
& = -1+ 1/(31/2)](2‘33)) —2eyy + e, — e — €3 + e3y),
éﬁ = _[1 + 1/(31/2)](_61x te; — ez ez — 2ely - 263}')
5 4(a): 8(b): 8(b), 8(b)
¢’ = day, ¢ = [4(dy, — dy.). _4(21/2)d1y]s @ = [A(—er; + e2), —4(ers + €20), 4(eyy + e3)],
56 =[1- (3]/2)]/(21/2)(d1x +dy;) él = 4/(31/2)(6’1:( — €1y — €z — eyt e — ),
£ = [—1+ UB")](ea — €1 + €2, + €1, — 2e1, + 2€3),
éﬁ = [1 - (31/2)](611 +ejx — ey t 621)

taneously with the ordering of the cations in the octahedral
sublattice (type 1:3) anion ordering occurs (Talanov, 1990,
1996a,b, 2007). When forming an ordered phase, the displa-
cement of tetrahedral and octahedral cations and also anions
takes place. Found by calculation, the sites which occupy the
tetrahedral A cations, the octahedral B cations and anions X in
the ordered spinel — A¥B*’ B2/ X$<X2* — are consistent with
the data of X-ray and neutron diffraction studies (Table 5)
(Joubert & Durif, 1964; Vandenberghe et al., 1976; Dargel &
Wolinski, 1976; Van der Biest & Thomas, 1975; Talanov,
1989a). The calculated structure of the ordered phase is shown
in Figs. 2 and 3. Since some of the sites contain free para-
meters, then, depending on the signs and magnitudes of these
parameters, the existence of different isostructural modifica-
tions of ordered structure is possible. Low-symmetry phases,
for example, LiAlsOg and Cus;,»,Mn;,0y4, belong to different
isostructural modifications of ordered spinel (Talanov, 1990).

The qualitative character of the rotation of the tetrahedra is
shown in Fig. 3. In this figure ordering structure (structure
with the rotation of the tetrahedra) is compared with the

structure of the ideal spinel structure with two types of anions,
placed in the same way as in the ordering spinel structure
(Figs. 3a, 3b, 3c, 3d).

An interesting symmetrical feature of the ordered phase
structure formed by the rotation of the tetrahedra is that,
among the elements of symmetry of the space group of the
phase structure, there are no inversion symmetry planes, only
the symmetry axes. Such crystals may exist as the right- and
left-hand forms. They are mirror images of each other. The
phases with the symmetry of P4332 and P4,32, which are
enantiomorphous modifications, are indistinguishable (except
for optical activity) by the physical properties. In crystals of
lithium ferrite LiFesOg they exist in the same sample as
domains (Talanov, 1996a,b).

The most widespread phase transition in the spinel family
associated with pure rotation of octahedra is that induced by
the two-dimensional IR of wavevector ky;: t5s (Sahnenko et al.,
1982, 1983, 1986). An ordered arrangement of distorted
octahedra and tetrahedra causes a tetragonal or orthorhombic
crystal structure as a whole (space group I4,/amd or Fddd).
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Table 5
Structural identification of phase states.

The number and multiplicity (in parentheses) of the Wyckoff position are indicated. After the colon the local symmetry of the Wyckoff position is given. For
example, the record of 1(8): 3(Cs) + 1(24): 1(C;) means that Wyckoff position 32¢ of group Fd3m in the low-symmetry phase G, with space group P4;32 (O°) or
P4,32 (O7) stratified into one eightfold Wyckoff position with local symmetry 3(Cs) and one 24-fold Wyckoff position with local symmetry 1(Cy). & = [2 + (3'/)].

Stratification of Wyckoff position

16d 32e

oP IR Gp 8a
(¢, 0, =9, 0, =9, 0) ko Ty P4;32 or P4,32

(& €&) Ky Ts I4,/amd

(Sl’ 52) k11: Ts5 Fddd

1(8): 3(G5)
1(4): Im2(Dg)
1(8): 222(D,)

1(4): 32(D3) + 1(12): 2(C5)
1(8): 2/m(Cs,)
1(16): 1(C))

1(8): 3(C3) + 1(24): 1(Cy)
1(16): m(C,)
1(32): 1(Cy)

Therefore the chain of transitions (Fd3m — I4,/amd — Fddd)
is possible.

Note the structural features of the tetragonal and ortho-
rhombic structures of deformed spinel induced by rotation of
the octahedra. IR 75 of vector k;; enters the composition of a
mechanical representation on Wyckoff positions 32e. Conse-
quently, these structural transitions are of the displacement
type. A detailed theoretical structural study of the mechan-
isms of forming the tetragonal and orthorhombic phases was
carried out earlier (Talanov, 1989a; Ivanov & Talanov,
1995a,b). Note that in the tetragonal phase the anions occupy
divariant Wyckoff position 164 with a monoclinic local
symmetry m; tetrahedral and octahedral cations occupy,
respectively, nonvariant Wyckoff positions 4a (the site
symmetry at position 4a is 4m2) and 8d (the site symmetry at
position 8d is 2/m) (Figs. 4, 5 and 6, Table 5).

The displacement of the anions in the unit cell of the spinel
structure is shown in Fig. 5, leading to the formation of the
tetragonal phase c/a > 1 (see Figs. 5a,b) and tetragonal phase
with c/a < 1 (see Figs. 5¢,d). The direction of displacement of
the anions in the octahedra by x and y coordinates coincides
with the displacements of the anions in the cubic spinel and is
opposite on the coordinate z: displacements of the anions,
leading to the formation of a tetragonally elongated phase c/a
> 1, are directed not to the ‘inside’ of the hexahedron (the
cube B40,), but to the ‘outside’ (Fig. 5). It leads to formation
of tetragonally elongated octahedra. In the formation of the
tetragonal shortened phase with c/a < 1 the displacements of

Figure 2

Calculated polyhedral model of the ordered spinel modification (the
structure of the pure rotation of the tetrahedra) with space group P4,32.
Octahedra around the atom B* are dark, around the atom B'?¢ are light;
tetrahedra around the atom A®* are light.

the anions are of the opposite sign. The anion displacements
have a specific character; they have led to rotation of octa-
hedra. Octahedra have bent as shown in Figs. 6(a), 6(d) and
6(c), 6(f).

In distorted octahedra there are two interionic distances
that are unequal to each other, ‘octahedral cation-anion’, and
six non-equivalent ‘anion—anion’ distances. The displacements
of the anions in a tetrahedron are such that all four interionic
distances (A—X), are equal; only the X—A—X angles
change.

These results of the analysis of the tetragonal structure
features are confirmed by numerous experimental facts. For
example, in NiCr,O4 [c/a = 1.04 (Krupichka, 1976)] and
NiRh,0, [c/a = 1.04 (Krupichka, 1976)] lattice distortion is
due to the tetrahedral coordinated ions of Ni**. It was
established experimentally that the four distances (Ni**—O),
in tetrahedra are equal to each other, while the O—Ni—O
angles deviate from their ideal values (Muller & Roy, 1974).

(d)

Figure 3

Projections (001) and (111) of structures of the ordered spinel
modification with space group P4532 (a), (¢), and ideal spinel (b), (d)
(octahedra not shown). Black circles represent oxygen atoms in positions
24e, light circles represent oxygen atoms in position 8c of the P4,32 phase.
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Figure 4

Calculated qualitative picture of the fragment of the distorted spinel
structure with the space group I4,/amd (in the basis of the spinel cubic
lattice): (a) the structure of the phase with the degree of tetragonality c/a
=1.03, (b) the structure of the phase with the degree of tetragonality c/a =
0.97. The magnitudes of the free parameters of oxygen (y, z) are taken to
show clearly the character of tetrahedra and octahedra distortions in
tetragonal spinel modifications. The two elementary cells have the same
orientations.

The oxygen octahedron with a chromium ion in the centre is
highly distorted. There are two different distances (Cr’*—0O),
equal to 0.198 and 0.199 nm (Ivanov & Talanov, 1995b).
Similar experimental data obtained for other crystals (for Mn
spinels, see Nogues & Poix, 1974, 1972) confirm the proposed
mechanism of tetragonal distortion of the spinel.

It is of interest that the formation of a tetragonally elon-
gated tetrahedron leads to the formation of a tetragonal
shortened octahedron (Fig. 4b), and formation of a tetra-
gonally shortened tetrahedron is accompanied by the forma-
tion of a tetragonally elongated octahedron (Fig. 4a).
Krupichka (1976) reports an investigation of spinel systems
containing Jahn-Teller ions in tetrahedral and octahedral
positions. It is noted that Cu®* ions in tetrahedral positions
have a compensating effect on the distortion caused by the
Cu”* and Mn’* ions in the octahedral positions. Krupichka
believes that this effect is a consequence of the opposite
distorting influence — tetrahedral Cu** ions ‘prefer’ the type of
distortion c¢/a < 1, while the octahedral Cu®** and Mn>* ions
prefer distortions with c/a > 1. We emphasize that from the

() (@)

Figure 5
The displacements of the anions in the octahedron BXj (a), (¢). Distorted
octahedron (b), (d).

examined mechanism of phase transition the compensation
effect follows naturally (the opposite character of the distor-
tion of the tetrahedron and octahedron); it exists even in the
situation where there is only one kind of Jahn-Teller ion in
one type of position.

It is also interesting to note that the ordered arrangement of
elongated (shortened) octahedra is not a ‘pure’ ordering of the
‘ferro’ type. The axes of elongated (shortened) octahedra and
tetrahedra are parallel to each other in the case of ‘ferro’-type
ordering (similar to parallel orientation of magnetic moments
in ferromagnetics). The tilting of the octahedra leads to
deviation from a parallel orientation of elongated (shortened)
octahedra. The orientation of distorted octahedra is shown in
Figs. 4 and 6.

In the formation of the orthorhombic phase the rotation of
the octahedra leads to the A cations occupying, as in the cubic
spinel, Wyckoff position 8a, but with local symmetry 222. B
cations in the structure of the orthorhombic phase are in
Wyckoff position 164 with local symmetry 1, and the anions
occupy general Wyckoff position 32/ with local symmetry 1
(Fig. 7 and Table 5). Apparently, according to this mechanism,
solid solutions CuFe, ,Al,O4 (0.04 < x < 0.45) and spinel
Cu, ,Geg,Fe; O, are formed (Antoshkin et al., 1985; Belov et
al., 1983).

Distortions of the octahedra and tetrahedra in the ortho-
rhombic phase are more various than in the tetragonal phase.
This is connected with the fact that the oxygen-atom position
in the tetragonal structure is defined by two parameters x, and
z.. The values of these parameters are expressed by the spinel
oxygen parameter u 2~ 3/8 and the oxygen-atom displacement
Xaq according to the following formulas: x; = —2(u + x,,); 2, = U
+ X.n. Rough estimation of x, and z, gives x, >~ 1/4, z, >~ 3/8
(Talanov, 1989b).

Oxygen-atom positions in the orthorhombic structure are
defined by three parameters which depend on the spinel
oxygen parameter and two parameters of the theory. Theo-
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Figure 6

Projection (111) of the distorted (), (¢) and undistorted (b) structure of spinel (only octahedra are
shown), fragments of octahedral chains (d), (e), (f) in tetragonal spinel modifications: c/a > 1 (a), (d);

cla =1 (b), (e); cla <1 (c), (f)-

(b)

Figure 7

A qualitative picture of the distorted spinel structure of the fragment with
the space group Fddd (in the basis of the spinel cubic lattice): (a) x = 0.38,
y=0.35,z=0.45; (b) x =0.39, y=0.39, z = 0.365; x, y, z — free parameters
of the Fddd phase structure. The magnitudes of the free parameters of
oxygen (x, y, z) are taken to show vividly the character of the tetrahedra
and octahedra distortions in orthorhombic spinel modifications. The
elementary cells in (a) and (b) have the same orientation.

X2
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retical calculations of the structural
mechanism of Fddd phase formation
show the possibility of the existence
of isosymmetric modifications of the
orthorhombic phase (Ivanov & Talanov,
1995a). These phases differ from one
another by the values of the free
parameters x, y and z, which define
the oxygen position in an elementary
cell. Examples of two calculated struc-
tures of the Fddd phase are shown in
Fig. 7.

Thus, in this paper for the first time
the structure rotation in spinels has
been studied by the methods of group-
theoretical analysis of phase transitions.
It is shown that there are 28 phases of
rotation of the tetrahedra and five
phases of octahedra rotation. It is
established that among the possible
phases of rotation of the tetrahedra
there is one phase of pure tetrahedra rotation. It is also shown
that out of the five phases of octahedra rotation there are only
three phases of pure octahedra rotation. Comparison of the
theoretical prediction of the possible phases of rotation with
the results of modelling of the structure of some widespread
types of low-symmetry modifications of spinel has been made.
The specific features of their structure have been found.
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